Vladimir Romanovsky's picture
Vladimir
Romanovsky
Professor
Email: 
veromanovsky [at] alaska [dot] edu
Phone: 
907-474-7459
Affiliations: 
University of Alaska Fairbanks

Publications

Cable, W. L., V. E. Romanovsky, and M. T. Jorgenson 2016. Scaling-up Permafrost Thermal Measurements in Western Alaska using an Ecotype Approach. The Cryosphere Discuss. doi:10.5194/tc-2016-30.
Grosse, G., Goetz, S., McGuire, A., Romanovsky, V., and E. Schuur 2016. Review and Synthesis: Changing Permafrost in a Warming World and Feedbacks to the Earth System. Environmental Research Letters. 11(4).
Grosse, G., S. Goetz, A.D. McGuire, V.E. Romanovsky, and E.A.G. Schuur 2016. Changing permafrost in a warming world and feedbacks to the Earth System. Environmental Research Letters. 11(4). doi:10.1088/1748-9326/11/4/040201.
Harp, D. R., A. L. Atchley, S. L. Painter, E. Coon, C. Wilson, V. E. Romanovsky and J. C. Rowland 2016. Effect of soil property uncertainties on permafrost thaw projections: A calibration-constrained analysis. The Cryosphere. 10. 341-358. doi:10.5194/tc-10-341-2016.
Lara, M.J., H. Genet, A.D. McGuire, E.S. Euskirchen, Y. Zhang, D.R.N. Brown, M.T. Jorgenson, V. Romanovsky, A. Breen, and W.R. Bolton 2016. Lowland boreal forest ecosystems in Alaska are dominated by wetlands comprised of a complex mosaic of fens, collapse-scar bogs, low shrub/scrub, and forests growing on elevated ice-rich permafrost soils. Thermokarst has affected the lowlands of the Tanana. Global Change Biology. 22(2). 816-829. doi:10.1111/gcb.13124.
Lara, M.J., H. Genet, A.D. McGuire, E.S. Euskirchen, Y. Zhang, D. Brown, M.T. Jorgenson, V. Romanovsky, A. Breen, W.R. Bolton 2016. Thermokarst rates intensify due to climate change and forest fragmentation in an Alaskan boreal forest lowland. Global Change Biology. doi: 10.1111/gcb.13124.
Liljedahl, A. K., J. Boike, R. P. Daanen, A. N. Fedorov, G. V. Frost, G. Grosse, Y. Iijma, J. C. Jorgenson, N. Matveyeva, M. Necsoiu, M. K. Raynolds, V. E. Romanovsky, J Schulla, K. Tape, D. A. Walker, H. Yabuki 2016. Recent circum-Arctic ice wedge degradation with major hydrologic impacts. Nature Geoscience. doi: 10.1038/NGEO2674.
McGuire, A.D., C. Koven, D.M. Lawrence, J.S. Clein, J. Xia, C. Beer, E. Burke, G. Chen, X. Chen, C. Delire, E. Jafarov, A.H. MacDougall, S. Marchenko, D. Nicolsky, S. Peng, A. Rinke, K. Saito, W. Zhang, R. Alkama, T.J. Bohn, P. Ciais, B. Decharme, A. Ekici, I. Gouttevin, T. Hajima, D.J. Hayes, D. Ji, G. Krinner, D.P. Lettenmaier, P.A. Miller, J.C. Moore, V. Romanovsky, C. Schadel, K. Schaefer, E.A.G. Schuur, B. Smith, T. Sueyoshi, and Q. Zhuang 2016. Variability in the sensitivity among model simulations of permafrost and carbon dynamics in the permafrost region between 1960 and 2009. Global Biogeochemical Cycles. 30(7). 1015-1037. doi: 10.1002/2016GB005405.
Noetzli, J., H. H. Christiansen, M. Gugliemin, V. E. Romanovsky, N. I. Shiklomanov, S. L. Smith, and L. Zhao 2016. [Global Climate] Cryosphere, Permafrost thermal state [in “State of the Climate in 2015”]. Bulletin of the American Meteorological Society. 97(8). S20-S22.
Romanovsky, V. E., S. L. Smith, K. Isaksen, N. I. Shiklomanov, D. A. Streletskiy, A. L. Kholodov, H. H. Christiansen, D. S. Drozdov, G. V. Malkova, and S. S. Marchenko 2016. [The Arctic] Terrestrial Permafrost [in “State of the Climate in 2015. Bulletin of the American Meteorological Society. 97(8). S149-S152.

Pages